2024-02-27 22:55:50 +00:00
|
|
|
//! Blinks an LED
|
|
|
|
|
//!
|
|
|
|
|
//! This assumes that a LED is connected to pc13 as is the case on the blue pill board.
|
|
|
|
|
//!
|
|
|
|
|
//! Note: Without additional hardware, PC13 should not be used to drive an LED, see page 5.1.2 of
|
|
|
|
|
//! the reference manual for an explanation. This is not an issue on the blue pill.
|
|
|
|
|
|
|
|
|
|
#![deny(unsafe_code)]
|
|
|
|
|
#![no_std]
|
|
|
|
|
#![no_main]
|
|
|
|
|
|
|
|
|
|
use panic_halt as _;
|
|
|
|
|
|
|
|
|
|
use nb::block;
|
|
|
|
|
|
|
|
|
|
use cortex_m_rt::entry;
|
2024-02-28 13:02:02 +00:00
|
|
|
use stm32f1xx_hal::{pac, prelude::*, rcc::Config, timer::Timer};
|
2024-02-27 22:55:50 +00:00
|
|
|
|
|
|
|
|
#[entry]
|
|
|
|
|
fn main() -> ! {
|
|
|
|
|
// Get access to the core peripherals from the cortex-m crate
|
|
|
|
|
let cp = cortex_m::Peripherals::take().unwrap();
|
|
|
|
|
// Get access to the device specific peripherals from the peripheral access crate
|
|
|
|
|
let dp = pac::Peripherals::take().unwrap();
|
|
|
|
|
|
|
|
|
|
// Take ownership over the raw flash and rcc devices and convert them into the corresponding
|
|
|
|
|
// HAL structs
|
|
|
|
|
let mut flash = dp.FLASH.constrain();
|
|
|
|
|
let rcc = dp.RCC.constrain();
|
|
|
|
|
|
|
|
|
|
// Freeze the configuration of all the clocks in the system and store the frozen frequencies in
|
|
|
|
|
// `clocks`
|
2024-02-28 13:02:02 +00:00
|
|
|
let clocks = rcc.cfgr.freeze_with_config(
|
|
|
|
|
Config {
|
|
|
|
|
// HSE frequency
|
|
|
|
|
hse: Some(8_000_000),
|
|
|
|
|
// PLLMUL represented by an integer -2
|
|
|
|
|
pllmul: Some(9 - 2),
|
|
|
|
|
// PCLK1 freq must be 36 MHz or less
|
|
|
|
|
ppre1: stm32f1xx_hal::rcc::PPre::Div2,
|
|
|
|
|
// ADCCLK freq must be 14 MHz or less
|
|
|
|
|
adcpre: pac::rcc::cfgr::ADCPRE_A::Div6,
|
|
|
|
|
..Default::default()
|
|
|
|
|
},
|
|
|
|
|
&mut flash.acr,
|
|
|
|
|
);
|
2024-02-27 22:55:50 +00:00
|
|
|
|
|
|
|
|
// Acquire the GPIOC peripheral
|
|
|
|
|
let mut gpioc = dp.GPIOC.split();
|
|
|
|
|
|
|
|
|
|
// Configure gpio C pin 13 as a push-pull output. The `crh` register is passed to the function
|
|
|
|
|
// in order to configure the port. For pins 0-7, crl should be passed instead.
|
|
|
|
|
let mut led = gpioc.pc13.into_push_pull_output(&mut gpioc.crh);
|
2024-02-28 13:02:02 +00:00
|
|
|
|
2024-02-27 22:55:50 +00:00
|
|
|
// Configure the syst timer to trigger an update every second
|
|
|
|
|
let mut timer = Timer::syst(cp.SYST, &clocks).counter_hz();
|
2024-02-28 13:02:02 +00:00
|
|
|
// at 72 MHz, timer of 1 Hz overflows, use 10 Hz instead (8 Hz experimental minimum)
|
|
|
|
|
timer.start(10.Hz()).unwrap();
|
|
|
|
|
|
|
|
|
|
// equivalent timers:
|
|
|
|
|
// let mut timer = Timer::syst(cp.SYST, &clocks).counter_us(); // us resolution
|
|
|
|
|
// let mut timer: SysCounter<1000> = Timer::syst(cp.SYST, &clocks).counter(); // ms resolution
|
|
|
|
|
// timer.start(100.millis()).unwrap();
|
2024-02-27 22:55:50 +00:00
|
|
|
|
|
|
|
|
// Wait for the timer to trigger an update and change the state of the LED
|
|
|
|
|
loop {
|
2024-02-28 13:02:02 +00:00
|
|
|
for _ in 0..10 {
|
|
|
|
|
block!(timer.wait()).unwrap();
|
|
|
|
|
}
|
2024-02-27 22:55:50 +00:00
|
|
|
led.set_high();
|
2024-02-28 13:02:02 +00:00
|
|
|
|
|
|
|
|
for _ in 0..10 {
|
|
|
|
|
block!(timer.wait()).unwrap();
|
|
|
|
|
}
|
2024-02-27 22:55:50 +00:00
|
|
|
led.set_low();
|
|
|
|
|
}
|
|
|
|
|
}
|